
Week 6 - Monday

 What did we talk about last time?
 Software quality assurance

MAGGIE SMITH 1934 - 2024

 Interaction design is planning out the user experience (UX) for a
software product

 It cares about how the product looks and sounds (and, one day, smells?)
and how the user gets output and puts input into it

 This field used to get little attention from computer scientists, but it's
really important
 Apple is a great posterchild for showing off the value of UX
 Even Microsoft, maligned for its user interfaces, has invested lots of money

studying how to make windows and icons easier to use
 UX is part of the field of human computer interaction (HCI), which

combines ergonomics, physiology, psychology, and graphic design with
computer science

 The quality of a user interface is called its usability

 Effectiveness: User can access all the features they need
 Efficiency: Users can achieve their goals quickly
 Safety: Users and computers aren't harmed
 Learnability: Users become proficient quickly
 Memorability: Users regain proficiency quickly after time

away from the product
 Enjoyability: Users experience positive emotions when using

the product
 Beauty: Users find the product aesthetically pleasing

 Effectiveness: Content isn't easily viewable on phones, and some rows at
the bottom or columns on the right can't be clicked on, depending on
screen size

 Efficiency: It takes something like 7 mouse clicks for me to upload a
project feedback form

 Safety: My wrists hurts after 7 clicks × 24 students
 Learnability: There are features of Blackboard that students never learn

about, and issues like the collapsing navigation bar cause perennial
problems

 Memorability: All the different options for exam timing and turn-in
options seem just as confusing each semester

 Enjoyability: I want to kill everyone after using Blackboard
 Beauty: This one is subjective, and I will admit that it looks better than it

did 10 years ago

 In the past, people were concerned with the computation and
threw in UX as an afterthought

 Now, we realize that UX has a lot to do with the features the
product should have

 Interaction design should be a key part of requirements
specification

 Some agile people think you should do the interaction design
during one sprint for the features that will be implemented in
the next sprint

 Before coding the UX, models are incredibly helpful to plan
out how it looks and behaves

 Static interaction design models show the audio and visual
parts of the product that don't change during execution

 Dynamic interaction design models show behavior during
execution

 Both are useful

 A use case is an interaction
between a product and its
environment

 An actor is an agent that
interacts with a product

 Use case diagrams (which
we've seen before) are static
interaction design models
that represent the actors that
interact with use cases

 Screen layout diagrams
and page layout
diagrams are drawings of
a product's visual display

 A wireframe is a low-
fidelity version that gives a
rough layout without a lot
of detail

 It's good to start with a
wireframe and refine it
with more detail later

 A use case diagram
shows which actors
interact with use cases

 However, it doesn't
explain what they do

 A use case description is
formatted text that
explains the actions that
an actor makes

 The use case description
is a dynamic interaction
design model

 Example template:

Use Case Name To identify the use case

Actors The agents participating in the use case

Stakeholders and
Needs

What this use case does to meet stakeholder
needs

Preconditions What must be true before this use case begins

Post conditions What will be true when this use case ends

Trigger The event that causes this use case to begin

Basic Flow
The steps in a typical successful instance of this
use case

Extensions
The steps in alternative instances of this use case
due to variations in normal flow or errors

 Another dynamic interaction design model is a storyboard
 A storyboard shows different screen layout diagrams

connected with arrows
 The arrows show either the passage of time or responses to events

 Use case descriptions can describe what is happening in
interactions, but storyboards show what it looks like

 Like screen layout diagrams, they will usually start simple and
then become more detailed

 Use case models can be helpful at the requirements stage
 Even with use case descriptions, they don't give enough

information about requirements that are not connected to
interactions
 Like processing the data once it's been received
 Or non-functional requirements

 They're good at showing interactions but not necessarily how
to build the system that makes those interactions work

 In short, use case models are useful but not enough
 Use case models can help elaborate PBIs during sprints

 Interaction design should move from abstract models to more concrete,
refined ones

 From stakeholder needs, you can make a use case diagram
 These can be elaborated with use case descriptions
 Screen layout diagrams and storyboards help with design and getting

feedback
 Usability testing uses experiments with test subjects to see if they can

interact with the product
 Testing doesn't have to be on the full, polished product
 Measurement could be:

▪ Asking the subjects questions about their experience
▪ Counting their errors
▪ Measuring time taken to accomplish tasks

 JOptionPane class provides static methods for:
 Displaying a message
 Asking a question

 Although it is possible to create a JOptionPane object, you
almost never do

 Just call the static methods
 Which means typing a lot of JOptionPane.

 To display "This is a message." you could call the
following:

JOptionPane.showMessageDialog(null,
"This is a message.");

 Most JOptionPane methods have many
overloads

 If you want to put a title on the window, you can
pass it in as the third parameter

 But this overloaded method also requires an int
parameter that says what kind of message you
want

 To add the title "Window Title", you might
call the following method:

JOptionPane.showMessageDialog(null,
"This is a message.", "Window Title",
JOptionPane.PLAIN_MESSAGE);

 You can choose an icon associated with one of the following constants:
 ERROR_MESSAGE
 INFORMATION_MESSAGE
 WARNING_MESSAGE
 QUESTION_MESSAGE
 PLAIN_MESSAGE

JOptionPane.showMessageDialog(null,
"Danger, Will Robinson!", "Danger!",
JOptionPane.WARNING_MESSAGE);

 What if you don't just want to display a message?
 You could also display a prompt with yes, no, and cancel

buttons, using the following method signature
int showConfirmDialog(Component parent,

Object message)
 This method will display message and return one of the

following int constants inside JOptionPane:
 YES_OPTION
 NO_OPTION
 CANCEL_OPTION

 Hitting the X in the corner is the same as Cancel

int answer = JOptionPane.showConfirmDialog(null,
"Do you want to break it down funky style?");

if (answer == JOptionPane.YES_OPTION) {
JOptionPane.showMessageDialog(null, "Dope!");

} else {
JOptionPane.showMessageDialog(null, "Weak!");

}

 A more flexible option for input is showInputDialog()
 It allows the user to type arbitrary text into a box
 Be careful with the return value
 If they cancel, it's null
 They might put crazy spaces at the beginning and end (use trim())
 Numbers have to be converted from String values

 Signature:
String showInputDialog(Component parent,

Object message)

 This input dialog asks a pressing question

 As with other methods, there are overloaded versions that
allow for titles, icons, and other options

String answer =
JOptionPane.showInputDialog(null,
"Why does a mouse when it spins?");

 JOptionPane was fine for creating a limited range of
dialogs

 If we want to make a whole window, we use JFrame
 Java uses the term frame instead of window, probably

because of concerns about lawsuits from Microsoft
 But when you hear JFrame, think "main window"

 When designing a JFrame, there are two meaningful
options:
 Creating a JFrame object and adding stuff to it inside of some other

class
 Extending JFramewith your own class, making your class a
JFrame plus more

 It doesn't really matter which one you pick
 To keep things simple, we'll create a JFrame object instead

of extending the JFrame class

 To create a JFrame, we will
usually call its constructor that
takes a String, giving it a
title

 Then, we have to make it
visible so that we can see it

JFrame frame = new JFrame("A Window");
frame.setVisible(true);

 The code from the previous slide will make a JFrame and make it visible
 However, it will probably be so small that you won't even notice it
 To deal with this problem, you should set its size, ideally before you make

it visible
 Its setSize()method takes two int values: width and height in pixels

 Eventually, once we add widgets to a JFrame, we can simply call its
pack() method, which will make it take up the amount of space it needs
to fit everything

JFrame frame = new JFrame("A Window");
frame.setSize(500, 400);
frame.setVisible(true);

 Next, you'll notice that closing the window doesn't end the program
 The little red square on the IntelliJ Console is still clickable, meaning that the

program is running
 By default, closing the window by clicking its X only hides the window
 By calling the setDefaultCloseOperation(), we can make it so

that the default operations is dispose (getting rid of the window)

 Many books suggest passing in JFrame.EXIT_ON_CLOSE, but you
should not!

 Doing so will kill the rest of your program like System.exit()

JFrame frame = new JFrame("A Window");
frame.setSize(500, 400);
frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
frame.setVisible(true);

 Widget is a generic term for a wide range of GUI controls
 Buttons
 Labels (allowing us to put text or images on a GUI)
 Text fields
 Text areas (like text fields but larger)
 Menus
 Checkboxes
 Radio buttons
 Lists
 Combo boxes
 Sliders

 A button you can click on is provided by the JButton class
 A JButton is usually created with text or an image
 Just creating the JButton doesn't do anything
 You have to add it to a JFrame (or other container) to see it
 Right now, we're just creating the buttons
 Later, we'll learn how to add actions to them

JButton button = new JButton("Push me!");

 Once you've created a JButton, you can
add it to a JFrame by calling the add()
method on the JFrame

 All GUI containers have an add() method
that allows us to add a widget to it

JFrame frame = new JFrame("A Window");
frame.setSize(500, 400);
frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
JButton button = new JButton("Push me!");
frame.add(button);
frame.setVisible(true);

 By default, a JFrame uses a layout manager called the BorderLayout that has five region
 Calling the simplest add() method adds a widget to the center, which stretches to take up all

available space
 You can specify that you're adding to:
 BorderLayout.CENTER
 BorderLayout.NORTH
 BorderLayout.SOUTH
 BorderLayout.EAST
 BorderLayout.WEST

JButton centerButton = new JButton("Push me!");
frame.add(centerButton, BorderLayout.CENTER);
JButton northButton = new JButton("Cold");
frame.add(northButton, BorderLayout.NORTH);
JButton southButton = new JButton("Hot");
frame.add(southButton, BorderLayout.SOUTH);
JButton eastButton = new JButton("Sunrise");
frame.add(eastButton, BorderLayout.EAST);
JButton westButton = new JButton("Sunset");
frame.add(westButton, BorderLayout.WEST);

 You can also make a JButton
with an image instead of text

 To do so, you create an
ImageIcon and pass that to
the constructor of the
JButton

 You'll need the path to an image

JButton bowieButton = new JButton(new ImageIcon("bowie.jpg"));
frame.add(bowieButton, BorderLayout.CENTER);

 A JLabel is like a button you
can't click

 Its constructors work just like
the JButton ones

 It allows you to display text or
an image

JLabel nameLabel = new JLabel("David Bowie");
JLabel bowieLabel = new JLabel(new ImageIcon("bowie.jpg"));
frame.add(nameLabel, BorderLayout.NORTH);
frame.add(bowieLabel, BorderLayout.CENTER);

 A JTextField allows a user to enter
a (short) amount of text

 Usually, you'll need a JLabel to tell
the person what they should enter

 The example is ugly because the
JLabel and the JTextField don't
fill the 500 x 400 JFrame

JLabel messageLabel = new JLabel("Enter the magic words:");
JTextField magicField = new JTextField();
frame.add(messageLabel, BorderLayout.NORTH);
frame.add(magicField, BorderLayout.SOUTH);

 A JTextField is for entering small
pieces of information
 Name
 Address
 Telephone number

 For larger texts, we can use a
JTextArea

JLabel storyLabel = new JLabel("Write a story:");
JTextArea storyArea = new JTextArea();
frame.add(storyLabel, BorderLayout.NORTH);
frame.add(storyArea, BorderLayout.CENTER);

 When you add a widget to a JFrame (or to a JPanel), its layout
manager determines how it will be arranged

 There are lots of layout managers, but it's worth mentioning four:
 BorderLayout
 GridLayout
 FlowLayout
 BoxLayout

 We won't talk about BoxLayout, but you should look it up
 BoxLayoutmakes it easy to arrange widgets in a horizontal or vertical line,

with different amount of spacing between widgets

 BorderLayout is the default layout for JFrame
 When you add widgets, you can specify the location as one

of five regions:
 BorderLayout.NORTH stretches the width of the container

on the top
 BorderLayout.SOUTH stretches the width of the container

on the bottom
 BorderLayout.EAST sits on the right of the container,

stretching to fill all the space between NORTH and SOUTH
 BorderLayout.WEST sits on the left of the container,

stretching to fill all the space between NORTH and SOUTH
 BorderLayout.CENTER sits in the middle of the container

and stretches to fill all available space
 If you don't specify where you're adding a widget, it adds to

CENTER
 If you add more than one widget to a region, the new one

replaces the old
 Unused regions disappear

 GridLayout allows you to create a
grid with a specific number of rows and
columns

 All the cells in the grid are the same
size

 As you add widgets, they fill each row

frame.setLayout(new GridLayout(4, 5));
for (int row = 0; row < 4; ++row) {
for (int column = 0; column < 5; ++column) {

frame.add(new JButton("" + (row * 5 + column + 1)));
}

}

 FlowLayout is the default
layout manager for JPanel

 Widgets are arranged in
centered rows in
FlowLayout

 If you keep adding widgets to
a FlowLayout, they'll fill the
current row until there's no
more room

 Then, they'll flow onto the
next row

 It's ugly but easy to use

frame.setLayout(new FlowLayout());
frame.add(new JButton("Flow"));
frame.add(new JButton("Flow"));
frame.add(new JButton("Flow"));
frame.add(new JButton("Your"));
frame.add(new JButton("Boat"));
frame.add(new JButton("Gently"));
frame.add(new JButton("Down"));
frame.add(new JButton("The"));
frame.add(new JButton("Stream"));

 A JPanel is an invisible container that:
 Acts like a widget in that you can add it to a JFrame (or another
JPanel)
 Can hold other widgets
 Can have its layout customized with a layout manager

 What if you have a BorderLayout and you want the EAST
region to contain widgets arranged with a GridLayout?

 Easy: you create a JPanel, set its layout manager to
GridLayout, add it to the EAST region, then add widgets
to the JPanel

 For complicated layouts
 Sketch out what you want it to look like
 Use BorderLayouts to give components a spatial

relationship
 Nest JPanels inside of JPanels (inside of
JPanels…) if you need to

 Use GridLayouts whenever you want to have a grid
 Be patient: it's hard to get it right the first time

JPanel buttonPanel = new JPanel(new GridLayout(4,1));
buttonPanel.add(new JButton("Kick"));
buttonPanel.add(new JButton("Punch"));
buttonPanel.add(new JButton("Backflip"));
buttonPanel.add(new JButton("Dodge"));
frame.add(buttonPanel, BorderLayout.EAST);
frame.add(new JLabel("Karate Story"), BorderLayout.NORTH);
frame.add(new JTextArea(), BorderLayout.CENTER);

 We have added JButtons to JFrames, but those buttons
don't do anything

 When clicked, a JButton fires an event
 We need to add an action listener to do something when that

event happens
 A CLI program runs through loops, calls methods, and makes

decisions until it runs out of stuff to do
 GUIs usually have this event-based programming model
 They sit there, waiting for events to cause methods to get

called

 What can listen for a JButton to click?
 Any object that implements ActionListener
 ActionListener is an interface like any other with a single

abstract method in it:

void actionPerformed(ActionEvent e);

 We need to write a class with such a method
 We will rarely need to worry about the ActionEvent object
 But it does have a getSource()method that will give us the
Object (often a JButton) that fired the event

 Using an anonymous inner class, we can make an
ActionListener object right when we need it, for a button

 It's ugly, but it works

JButton button = new JButton("Push me!");
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
button.setText("Ouch!"); // arbitrary code

}
}); // ugly: parenthesis for end of method call

 Call arbitrary methods
 setText() sets the text on many widgets
 getText() gets the text from widgets so you can do something with it
 Both setText() and getText() apply to:
 JButton
 JLabel
 JTextField
 JTextArea

 setIcon() sets the icon on many widgets
 JButton
 JLabel

 setEnabled() can be used to enable and disable buttons

 Before Java 8, we only had two choices:
 Make a whole class that implements ActionListener and might have

to do different actions based on which button fired the event
 Make a separate anonymous inner class for every single button, each

doing the action for that button
 Java 8 adds something called lambdas which actually make

anonymous inner classes too, but the syntax is much nicer
 Java 8 style:

JButton button = new JButton("Push me!");
button.addActionListener(e -> button.setText("Ouch!"));

 An interface with only a single method in it (like ActionListener) is called a
functional interface

 Java 8 lets us instantiate functional interface by filling out the method:
(Type1 arg1, Type2 arg2, …) -> { /* method body */ }
 But if it's possible for the compiler to infer the argument types, they don't have

to be written
 If you only have a single argument, you don't need parentheses
 And if you only have a single line in your method body, you don't need braces
 Multi-line example:

JButton button = new JButton("Push me!");
button.addActionListener(e -> {

button.setText("Ouch!");
button.setEnabled(false);

});

 Visual design principles
 Software engineering design

 Read Chapter 7: Software Engineering Design for Wednesday
 Keep working on the draft of Project 2
 Due Friday of next week

	COMP 3100
	Last time
	Questions?
	Slide Number 4
	User Interaction Design
	Interaction design
	User interaction design goals
	Blackboard: A case study in terrible UX
	When to do interaction design
	Interaction design models
	Use case diagrams
	Layout diagrams
	Use case descriptions
	Storyboards
	Use case models and requirements
	Interaction design processes
	Crash Course on Java Swing
	JOptionPane
	JOptionPane
	showMessageDialog() example
	Adding a title
	Different icons
	showConfirmDialog()
	showConfirmDialog() example
	showInputDialog()
	showInputDialog() example
	JFrame
	JFrame
	Creating or extending
	Creating a JFrame
	setSize()
	setDefaultCloseOperation()
	Widgets
	Widgets
	JButton
	Adding a JButton to a JFrame
	Adding to different parts of a JFrame
	Displaying an icon on a JButton
	JLabel
	JTextField
	JTextArea
	Layout Managers
	Layout managers
	BorderLayout
	GridLayout
	FlowLayout
	JPanel
	Complicated layouts
	Action Listeners
	Making buttons do things
	ActionListener interface
	Adding an action listener
	Things you might do in an action listener
	Java 8 style
	More on Java 8 style
	Upcoming
	Next time…
	Reminders

